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1 Introduction

The modeling and simulation process for design often involves many small
iterations through multiple changes to geometry. In an automated setting,
geometric characteristics are represented as parameters that are driven via
an optimization procedure. The ability to automatically adjust and update
an existing mesh to conform to modifications in the geometry is a necessary
capability that can enable rapid prototyping of many alternate geometric de-
signs. It is clear however, that a mesh morph or update capability will have
its limitations based upon the magnitude of the geometric changes required,
however extending the range in which the connectivity of a mesh may be
reused through many iterations of the design process is the desired outcome
of this research.

In this research note we propose three different methods for morphing a
mesh onto an updated geometry: 1. Smoothing, 2. Weighted Residuals, and 3.
Simplex-based transformations. In each case we assume the geometric topol-
ogy description of the model through all iterations of the optimization, remains
constant. This assumption allows for the geometric ownership of nodes and
elements in the mesh to also remain unchanged through design iterations.

For our purposes we begin with a geometry domain, Ωn
G = {Gr

i |r =
0, 1, 2, 3} at iteration n, with geometry entities of dimension r. An existing
finite element mesh, Ωn

M = {Mr
i |r = 0, 1, 2, 3}, also at iteration n, is assumed

to have been generated and associated with its owning geometry in Ωn
G. We

seek a transformation Ωn
M ⇒ Ωn+1

M given a new Ωn+1
G such that the ele-

ment quality in Ωn+1
M is usable and preferably optimal. Since the connectivity

of mesh entities in Ωn
M and Ωn+1

M will be identical, we seek only the nodal
transformation Mn

0 ⇒Mn+1
0

†Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lock-
heed Martin Company for the United States Department of Energy’s National Nu-
clear Security Administration under contract DE-AC04-94AL85000
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2 Mesh Morphing Methods

In defining the transformation Mn
0 ⇒ Mn+1

0 we address each dimension in-
dependently. For example, nodes are first transformed from vertices of Ωn

G to
Ωn+1

G , followed by curves, surfaces and finally volumes. For vertices, knowing

the new location of vertex j represented as X
([
G0

j

]n+1
)

, the corresponding
location of its associated node k can be represented as:

X0

([
M0

k

]n+1
)

= X
([
G0

j

]n+1
)

(1)

and for curves:

X1

([
M0

k

]n+1
)

=
[
G1

j

]n+1
(tk) (2)

where
[
G1

j

]n+1 (tk) is a simple parametric evaluation of curve j at parameter
tk where we have assumed tk = tnk = tn+1

k .

2.1 Smoothing

The first method employed, utilizes existing smoothing techniques incorpo-
rated in the Mesquite [1] toolkit. Using the nodal coordinates established on
the curves as fixed, an optimization based smoothing technique is used to
establish coordinate locations for interior nodes on surfaces. Mesquite’s mean
ratio, condition number [2] and untangling smoothing procedures are used
adaptively based on local mesh quality. The same smoothing techniques are
also employed for volumes, where the node locations established from the
surface smoothing operations are now fixed and used as input to the volume
smoothing operation.

2.2 Weighted Residuals

Also implemented is a method for morphing nodes on surfaces and volumes is
a technique based upon the weighted residual method employed for hexahedral
sweeping. In this method, the initial surface mesh, Ωn

M , is first transformed
using an affine transformation, M, as described in [3], A correction is then
applied to the transformed coordinate based upon the weighted sum of the
nearby residual vectors of boundary nodes. The location of an interior surface
node k, can be represented as:

X2,3

([
M0

k

]n+1
)

= M ·X2,3

([
M0

k

]n)
+

npts∑
i=1

wiRi (3)

Ri = X1

([
M0

i

]n+1
)
−M ·X1

([
M0

i

]n)
(4)
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wi =
d−2

i∑npts
j=1 d

−2
j

(5)

where Ri in equation (4) is the vector from boundary node i, where M has
been applied at iteration n, to the location of the same boundary node i at
iteration n + 1 as determined from equation (2). The weight wi in equation
(5), is defined as the normalized inverse distance squared from the current
node being computed to its surrounding boundary nodes. For efficiency, only
a selection of the closest nodes is used to influence the weight wi. Equation (3)
can also be used to compute the interior node locations for volumes (r = 3).

2.3 Simplex-Based Transformations

The final method we propose is based upon a mesh sweeping method intro-
duced by the authors in [4]. For this method we utilize a Delaunay tessellation
of the boundary nodes [5]. For purposes of this study, only the 3D simplex-
based transformation case was implemented, but used a weighted residual
implementation for surface node transformations. For an interior node i in
the volume, its enclosing tetrahedron, Tn

i is determined and its corresponding
Barycentric coordinates, Bi is computed. We also define the requirement that
connectivity for tetrahedron Tn

i defined at iteration n remains the same for all
Tn+1

i at iteration n+1 and make the assumption that Barycentic coordinates,
Bi, for node i with respect to Tn

i and Tn+1
i will be the same:

Bi = Tn
i

([
M0

j=1,..4

]n)
= Tn+1

i

([
M0

j=1,..4

]n+1
)

(6)

We can therefore define the interior node locations for a volume at iteration
n+ 1 as:

X3

([
M0

i

]n+1
)

=
4∑

j=1

(Bi)j ·X2

(
Tn+1

i

)
j

(7)

where (Bi)j is defined as the jth component of Bi and X2

(
Tn+1

i

)
j

is the jth

vertex of tetrahedron Tn+1
i .

3 Examples

Two example problems are illustrated in figures 1-2 that focus on morphing
of hexahedral meshes. In these examples, an initial geometry configuration
is defined using parametric dimensioning. Figure 1 illustrates the parameters
used in this model. A similar set of parameters was also defined for the other
example as well as a range of acceptable values for each parameter. For each
iteration, a perturbation of the parameters was defined and geometry was re-
constructed using the new parameters. Mesh morphing was then performed
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to apply the mesh from the previous iteration to the new geometry. For both
example cases the three proposed mesh morphing techniques were applied and
resulting mesh quality tabulated. Initially, small perturbations were applied
to the parameters to simulate small geometry changes over many design it-
erations. Secondly, we also looked at larger parametric changes, still within
acceptable ranges, that may simulate fewer, but grosser changes to the geom-
etry.

Fig. 1. Example problem ”bore”. Dimensions represent parameters which may
change on the geometry

Fig. 2. Example problem ”courier”
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4 Summary of Results

Smoothing : Since the meshing package we used already incorporated the
Mesquite smoothing tool, this method proved simplest to implement. Small
changes in geometry were tracked very well, such as those represented by the
”bore” model. Larger changes that required non-linear transformations, such
as those in the ”courier” model, proved impossible to capture. Inconsistent
results were also noted depending on the starting iteration.

Weighted Residual : This method proved more efficient and more accu-
rate than smoothing alone, with consistency improvements noted. Adding an
additional iteration of smoothing following the weighted residual calculation
proved effective in improving quality further. In general, we noted that the
weighted residual calculation provided an effective initial guess to the smooth-
ing process, making it much more efficient and consistent.

Simplex-Based Transformations: This method proved most effective for
large transformations with complex geometry such as the ”courier” model.
For the selected models, we noted the greatest range in parameter changes
with reasonable quality elements. We also noted that additional smoothing
was not required for the models tested. Provided a simplex tessellation and
point location tool is available, the implementation is also relatively simple.

In summary we have concluded that the simplex-based transformation
method is the most effective for the widest range of geometries and parameter
changes. Although efficiency of the simplex-based method is not quite as good
for simple models when compared to smoothing and weighted residuals, larger,
more complex models have proven faster and more accurate with this method.

References

1. Brewer, M., L. Diachin, P. Knupp, T. Leurent, and D. Melander, ”The Mesquite
Mesh Quality Improvement Toolkit”, Proceedings, 12th International Meshing
Roundtable, pp. 239-250 (2003)

2. Knupp, P., ”Achieving Finite Element Mesh Quality via Optimization of the
Jacobian Matrix Norm and Associated Quantities, Part I”, Int. J. Num. Meth.
Engr. Vol 48 pp. 401-420 (2000)

3. Knupp, P. ”Next-Generation Sweep Tool: A Method For Generating All-Hex
Meshes On Two-And-One-Half Dimensional Geomtries”, Proceedings, 7th In-
ternational Meshing Roundtable, pp.505-513 (1998)

4. Staten, M. L., S. A. Canann, and S. J. Owen, ”BMSWEEP: Locating Interior
Nodes During Sweeping,” Engineering With Computers, Vol. 15 No. 3, pp.212-
218 (1999)

5. Vavasis, S. ”QMG: mesh generation and related software,”
http://www.cs.cornell.edu/home/vavasis/qmg-home.html (2010)


